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ABSTRACT
In this paper, we study search bot traffic from search engine query
logs at a large scale. Although bots that generate search traffic
aggressively can be easily detected, a large number of distributed,
low rate search bots are difficult to identify and are often associ-
ated with malicious attacks. We present SBotMiner, a systemfor
automatically identifying stealthy, low-rate search bot traffic from
query logs. Instead of detecting individual bots, our approach cap-
tures groups of distributed, coordinated search bots. Using sam-
pled data from two different months, SBotMiner identifies over 123
million bot-related pageviews, accounting for 3.8% of total traffic.
Our in-depth analysis shows that a large fraction of the identified
bot traffic may be associated with various malicious activities such
as phishing attacks or vulnerability exploits. This findingsuggests
that detecting search bot traffic holds great promise to detect and
stop attacks early on.

Categories and Subject Descriptors
H.3.0 [Information Storage and Retrieval]: Information Search
and Retrieval—General; C.2.0 [Computer Communication Net-
works]: General—security and protection

General Terms
Algorithms, Security, Measurement

Keywords
Web search, search log analysis, botnet detection, click fraud

1. INTRODUCTION
Web search has been a powerful and indispensable means for

people to obtain information today. With an increasing amount
of Web information being crawled and indexed by search engines,
attackers are also exploiting search as a channel for information
collection and malicious attacks. For example, previous studies
have reported botnet attacks that search and click advertisements
displayed with query results to deplete competitors’ advertisement
budgets [9].
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In this paper, we study more broadly bot-generated search traffic
from search engine query logs. We focus on not just maliciousclick
bot traffic, but any query that was submitted by non-human users.
Identifying and filtering such bot traffic is critical to search en-
gine operators for a number of important reasons, includingclick-
fraud detection, page-rank computation, and auto-complete feature
training. For example, click-through rates can be used to improve
query result rankings [2]. The existence of a large number ofbot-
generated queries may result in either inflated or deflated query
click-through rates, hence may have negative impact on the search
result rankings.

More importantly, detecting bot-generated search traffic has pro-
found implications for the ongoing arms race of network security.
While many bot queries from individual hosts may be legitimate
(e.g., academic crawling of specific Web pages), a significantly
fraction of bot search traffic is associated with malicious attacks
at different phases. In addition to the well known click-fraud at-
tacks that can be commonly observed in query logs, attackersalso
use search engines to find Web sites with vulnerabilities, toharvest
email addresses for spamming, or to search well-known blacklists.
More recently, it is reported that attackers have directed phishing
attack victims to search engine results to reduce their infrastruc-
ture cost [1]. Although many of these malicious activities do not
directly target search engines, identifying the attack-related search
traffic is critical to prevent and detect these attacks at their early
stages.

Nevertheless, despite a few early efforts towards identifying spe-
cial classes of click-bot attacks (e.g., [16, 32, 20, 21]), there has
been little work on studying bot-generated search traffic, in partic-
ular those related with a large class of malicious attacks. Anumber
of challenges make this task difficult. First, the amount of data to
process in the query logs is often huge, on the order of terabytes per
day. Thus any method that mines the data for identifying bot traffic
has to be both efficient and scalable. Furthermore, with manybot-
net hosts available, attacks are getting increasingly stealthy—with
each host submitting only a few queries/clicks—to evade detection.
Therefore, search bot detection methods cannot just focus on ag-
gressive patterns, but also need to examine the low rate patterns that
are mixed with normal traffic. Third, attackers can constantly craft
new attacks to make them appear different and legitimate; thus we
cannot use the training-based approaches that derive patterns from
historical attacks. Finally, with the lack of ground truth,evaluating
detection results is non trivial and requires different methodology
and metrics than the detection methods.

We present SBotMiner, a system that automatically identifies
bot-generated search traffic from query logs. Our goal is to de-
tect stealthy, low rate bot traffic that cannot be easily identified by
common threshold-based methods. To do so, we leverage a key ob-



servation that many bot-generated queries are controlled by a com-
mon master host and issued in a coordinated way. Therefore, while
individual queries may look indistinguishable from normaluser is-
sued queries, they often show common or similar patterns when
we view them in aggregate. Instead of reasoning whether an indi-
vidual search event originates from a bot or not, SBotMiner gathers
groups of users who share at least one identical query and click, and
examines the aggregated properties of their search activities. By
focusing on groups, our approach is robust to noise introduced by
sophisticated attackers. It is also easier to verify captured groups,
compared to individual users.

We have implemented SBotMiner on a large cluster of 240 ma-
chines in Dryad/DryadLINQ [14, 31] and it can scalably process
700 GB data in 2 hours. Using sampled data from query logs
collected in two different months, SBotMiner identifies 123mil-
lion bot-generated page views, which account for 3.8% of thetotal
sampled query traffic. We further perform a detailed study ofthe
detected bot-traffic. Our key findings include:

• Attackers are leveraging search engines for exploiting vul-
nerabilities of Web sites. SBotMiner Identifies 88K search-
bot groups searching for various PHP scripts and ASP scripts.

• Search bots are spread all over the world. Search bots from
different countries display different characteristics. Search
bots from countries with high speed Internet access, e.g.,
Japan, Singapore, US, are more aggressive in submitting queries
than those from other locations.

• The results of SBotMiner can be useful for other security
applications. For example, SBotMiner identifies a phishing
attack that tried to steal a large number of messenger account
credentials.

To our knowledge, we are the first to perform a systematic study
of a broad class of bot-generated search traffic. Although our re-
sults and findings are based on sampled snapshots of query logs,
they demonstrate that detecting and analyzing bot-generated search
traffic has two advantages: It is not only useful to detect andstop
attacks targeting directly at search engines, but is also promising as
a general method for identifying a wide class of malicious activities
in the Internet.

2. RELATED WORK
Search engines receive a large amount of bot-generated traffic.

For example, search engine competitors and third-parties often gen-
erate bot-traffic to study the query latency and result qualities [10,
23]. Academic researchers could also use scripts to gather informa-
tion from search engines (e.g., [3, 27]). These types of botsare not
related with attacks. However, identifying and filtering them from
the query log is essential for mining data and computing statistics.

Beside these legitimate bots, there also exist a number of mali-
cious search bots, for example, click fraud bots. Click Forensics
estimated that the percentage of click fraud reached 12.7% in the
second quarter of 2009 [8]. Google also reported a type of click bot
attack called ClickBot.A [9, 12] that involves more than 100,000
compromised botnet hosts. Each bot host is very stealthy andcon-
ducts low frequency click frauds.

To fight click fraud, several methods have been proposed. Some
are based on click through rates and duplicated clicks [16, 32],
while others [20, 21] use statistical techniques to identify specific
patterns of the click fraud traffic [19]. These approaches are mostly
postmortem-based detection. Majumdar et al. proposed a content
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delivery system to verify broker honesty under standard security
assumptions [18].

Besides click fraud, there are many other malicious activity re-
lated searches in the Internet [25]. Moore et al. [22] identified four
types of evil searches and showed that some Web sites have been
compromised shortly after evil Web searches. For example, attack-
ers searched a known PHP vulnerability that affected all versions
of PHPizabi [11]. By searching“phpizabi v0.848b c1 hfp1”, at-
tackers can gather all the Web sites that have this vulnerability and
then subsequently compromise them.

All the above work detects particular types of search bots based
on the prior knowledge of the bot activity characteristics.To our
knowledge, there has been no systematic approach to identify search
bot in general. A recent study by Buehrer et al. [5] analyzed the
search logs and provided high-level characteristics of suspicious
search traffic. The study primary focuses on the anomalies inthe
search logs for detecting aggressive search bots.

However, not all search bots are aggressive. For example, Click-
Bot.A is stealthy and thus cannot be detected using the common
threshold-based methods. Our goal in this paper is to detectthese
stealthy bot activities. We mainly target distributed search bots that
involve many users and span multiple IP addresses, for example,
botnet-based search bots.

Botnet detection has received much attention in network secu-
rity. A large number of study focused on spamming botnets [34,
33, 30, 7, 26, 13]. Recently, botnets are also shown to conduct
DDoS attack [15] and steal financial data such as credit card ac-
counts and PayPal accounts [28]. In this paper, we aim to takea
first step towards a systematic approach to identify search bots. We
compare the captured search bot IP characterizes against the spam-
ming botnet IP properties. We hope our study can shed light onthe
problem of detecting and understanding search bots in general.

3. METHODOLOGY
SBotMiner explores the distributed nature of stealthy attacks,

where distributed bots are controlled by a remote commander. Since
bots follow scripts issued by the commander, bot-generatedactiv-
ities are similar in nature. SBotMiner leverages this property and
aims to identify groups with similar search activities.

Figure 1 shows the high-level processing flow of SBotMiner.
It consists of two steps. The first step is to identify suspicious
search activity groups that significantly deviate from history ac-
tivities. These groups include both the search bots and alsoflash-
crowd events. In the second step, SBotMiner adopts a matrix-based
approach to distinguish the search bots from flash crowds. Next, we
present these two steps in detail.

3.1 History-based Suspicious Group Detection
The motivations of search bots are usually very different from

human users. For example, they could excessively click a link to
promote the pagerank, or click competitor’s advertisements to de-
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Figure 2: Query-click histogram comparison. (a) history his-
togram, (b) current histogram.

plete their advertisement budget. In these cases, they wantto in-
fluence the search engine to change the search results. As a result,
query click patterns of search bots must be significantly different
from normal users. Also attack traffic is usually short-lived, as
many attackers need to rent many compromised machines to per-
form distributed attacks. Therefore, we use a history-based detec-
tion approach to analyze the change of query-click patternsto cap-
ture the new attacks.

Each queryq to the search engine retrieves a query result page.
On the page, there could be many links {L1, L2, ...,Ln}, including
all the search results and advertisement links. A user can click zero
or more of such links. Note that no click is treated as a special
type of click. Given the click statistics, we can build a histogram
of click distributions of queryq as illustrated in Figure 2. Each bar
corresponds to one linkLi and the bar value is the corresponding
percentage of clicks. The histogram of query-click distribution may
change over time. For example, Figure 2(a) shows a the histogram
of queryq in history and (b) shows the current histogram.

We use a smoothed Kullback-Leibler divergence to compare the
histogram of query click activities against history. DenoteHs(i), i =
{L1, ..., Ln}, the history histogram of clicks onLi, andHc(i) the
current histogram of clicks. The histogramH(i) is normalized
such that

∑

i H(i) = 1. The Kullback-Leibler divergence [17]
from current histogramHc to the history histogramHs is defined
as:

DKL(Hc‖Hs) =
∑

i

Hc(i) log
Hc(i)

Hs(i)
(1)

Note that the Kullback-Leibler divergence is always non-negative,
i.e., DKL(Hc‖Hs) ≥ 0, with DKL(Hc‖Hs) = 0 if and only if
Hc = Hs.

Intuitively, DKL measures the difference between two normal-
ized histograms. For each linkLi associated with a given query, the
ratio Hc(i)

Hs(i)
measures the frequency change of clicks on the linkLi.

The log of this ratio is then weighted by the current click frequency
Hc(i), and the Kullback-Leibler distance in Equation 1 is the sum
of the weighted log ratios over all clicked linksi = {L1, ..., Ln}.

Kullback-Leibler distance and its variants have been used in many
applications including query expansion [6] and text categorization [4]
in information retrieval. For our search bot detection application,
we make two changes to Equation 1:

• First, we want to detect search bots that are currently active.
In other words, we are only interested in links that receive
more clicks. To account for this we replace the log ratio by
max{log Hc(i)

Hs(i)
, 0}.

• Second, if the current click histogram is similar to history
histogram but the total number of clicks associated with a
query is increased significantly, we still want to mark such

query-clicks as suspicious for further examination using a
matrix-based method (see next section), especially for those
rare query terms that are associated with only one type of
clicks (normalized histogram would be the same for these
queries). For this purpose, we add the second termlog Nc

Ns+1
to the Kullback-Leibler distance, whereNc is the total num-
ber of clicks currently received for a given query, andNs is
the total number of clicks associated with the same query in
the history (we useNs + 1 to avoid potential overflow when
Ns = 0.).

The final modified Kullback-Leibler distance becomes:

DKLm(Hc‖Hs) = log
Nc

Ns + 1
+

∑

i

Hc(i) max{log
Hc(i)

Hs(i)
, 0}

(2)
We use a smoothing version ofHs(i) to avoid overflow inDKLm,

by replacing zero values inHs(i) with a small valueǫ. Specifically,
we define

Hs(i) =

{

βHs(i), if Hs(i) > 0
ǫ, otherwise

Hereβ is a normalization factor such that the resulted histogram
satisfies

∑

i
Hs(i) = 1.

If there is significant difference (DKLm(Hc‖Hs) > α) between
the history histogram and current one, we conclude the related
queryq as a suspicious query. For a link that is more popular than
history, we pick it as the suspicious clickc and form a query click
pair <q,c> (abbreviated toQC pair in the rest of the paper, and
the lowercaseqc denotes a particularQC pair value). Note that
for one query, if multiple links are becoming popular, multipleQC

pairs are generated. In our experiment, SBotMiner conservatively
setsα to be 1 and also requires each group to have at least 100 users
so that we can study the group similarity of these users.

Our history-based detection captures events that suddenlyget
popular. These events can include both bot events and flash-crowd
events. Next, we use a matrix-based approach to distinguishthe
two cases.

3.2 Matrix-based Search-bot Detection
The main difference between the bot traffic and flash crowds is

that bot traffic is generated by a script. In contrast, flash crowd ac-
tivities are originated from human users. Therefore, the flash crowd
groups exhibit a higher degree of diversity. In other words,al-
though the users who generate the flash crowd traffic share thesame
interest at one time, e.g., searching Michael Jackson and clicking
his webpage, they can have different search history and alsodiverse
system configurations such as different browsers and operating sys-
tems. In this paper, we use the query history as a feature to drive
the matrix-based approach, and use other features such as system
configurations for validation (Section 4.2).

The matrix-based algorithm leverages the diversity of users to
distinguish bot events from flash crowds. For each suspicious QC

pair qc detected by the history-based algorithm, we first select all
usersUqc= {U1, U2, ..., Um} who performed this query-click ac-
tivity and then extract all the search traffic fromUqc into a group
G. Suppose there aren unique queries {Q1, Q2, ..., Qn} in the
group, we construct a matrixMqc as shown in Figure 3. Each row
in the matrix corresponds to a query and each column represents
a user.Mqc(i, j) denotes the number of queryQi originated from
userUj .

Figure 4 illustrates two representative matrixes. Figure 4(a) is a
flash-crowd matrix, where users share one identical queryq (last
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Figure 4: Query-click histogram comparison. (a) a flash-crowd
matrix, (b) a bot matrix, shaded columns are correlated users.

row), but their other queries are diverse and uncorrelated.Fig-
ure 4(b) is a bot matrix, where many users (shaded columns) in
this matrix have identical/correlated behavior.

In some extreme cases, bot activities are very dedicated, with
each bot user only issuing one or a few queries. For these easy
cases, we use a metricFqc to quantify the “focus-ness” of the
group, i.e., percentage of traffic originating from users that searched
only for q over the total traffic inG.

Fqc =

∑

j
{Mqc(q, j)|∀j, s.t.

∑

i6=q
Mqc(i, j) = 0}

∑

ij Mqc(i, j)
(3)

Figure 5 shows the distribution ofFqc across all groups that are
detected by the history-based scheme. We can see that more than
10% of groups haveFqc equal to zero. This shows that users who
perform theseqc pairs all conduct some other queries as well, sug-
gesting that these groups to be flash crowd groups. There is a small
fraction of groups withFqc between 0.1 and 0.6. A majority (70%)
of the groups haveFqc>0.7. For these groups, at least 70% of users
conduct theqc pair query do not issue other queries. WhenFqc is
close to 1, it means almost all the users in the group search only q.
They are very suspicious groups as normal users have diverseac-
tivities. SBotMiner conservatively setsFqc = 0.9 as the threshold
for selecting bot groups.

By looking at the user-group properties, our approach is robust to
a small amount of noise (i.e., coincident legitimate searchtraffic).
It is also easier to validate bot-groups than individual bots because
we can compare the similarity of the activities within a group, e.g.,
whether they use the same user agent.

3.3 Separating Bot Traffic from User Traffic
The matrix-based detection method presented in the last subsec-

tion provides a base for us to detect groups with a dominant frac-
tion of bot search traffic. However, using a single fixed threshold
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Figure 5: Fraction of groups vs.Fqc.

of the group “focus-ness”Fqc requires us to set a very conservative
threshold (close to 1) to reduce the false positives. If an attacker
picks a more popular query by normal users, the fraction of bot
traffic may not be large enough to meet the strict threshold and
hence SBotMiner may miss the corresponding group in detection.
Furthermore, each bot user may submit multiple queries, andthere-
fore appears to be normal users. In these two cases, we would still
like to catch the bot-traffic group and further separate bot-generated
query/clicks from normal user traffic.

To do so, we perform principal component analysis (PCA) [24]
on those query matrices that do not meet the “focus-ness” thresh-
old. PCA is a statistical method to reduce data dimensionality with-
out much loss of information. Given a set of high-dimensional
data points, PCA finds a set of orthogonal vectors, called princi-
pal components that account for the variance of the input data. Di-
mensionality reduction is achieved by projecting the original high-
dimensional data onto the low-dimensional subspace spanned by
these orthogonal vectors.

The rational of adopting PCA for our analysis is that since bot
users from one group are controlled by the same script, theirqueries
are often strongly correlated, for example, all submittinga similar
set of queries. We can therefore use PCA to identify the correlated
bot query patterns that are hidden among a large variety of normal
user queries.

Given a query matrixMqc, we first convert it into a binary ma-
trix Bqc, whereBqc(i, j) = 1 iff Mqc(i, j) > 0. PCA is then per-
formed on the converted binary matrix. Since bot user queries are
strongly correlated while normal user queries are not, intuitively the
subspace defined by the largest principal component corresponds to
the subspace of bot user queries if they exist. So SBotMiner selects
the largest principal component denoted asE1 and computes the
percentage of data varianceP1 accounted for byE1. A largeP1

means a large percentage of users all exhibited strong correlations
in their query patterns and are thus suspicious.

To further identify these suspicious users, for any matrixBqc

with P1 greater than a threshold (currently set to 60%), the next
question is how to identify the column vectors that correspond the
subspace defined byE1. To do so, we projectBqc onto the sub-
space defined byE1 to obtain a projected matrixB′

qc. For each
column (user) vectorui in the original matrixBqc, denote its cor-
responding vector in the projected matrixB′

qc asu′
i. If theL2 norm

difference betweenui andu′
i is very small, that means the projec-

tion onto the subspaceB′
qc does not change the vectorui much

and the principal componentE1 describes the data well. Therefore,
SBotMiner selects thek user vectors with the smallestL2 norm dif-
ferences||ui − u′

i|| that accounts for the energy in the subspace of
E1. To do so, we choosek such that

k = ⌊m ×
||E1||2
||E||2

⌋



Features

For detection User ID (anonymized)
Query term

Click
For validation IP address

Cookie (anonymized)
Cookie creation time

User agent (anonymized)
Form

Is Javascript enabled

Table 1: Features.

Time Total Sampled Pageviews

Feb data 1,722,390,355
April data 1,662,815,486

Table 2: Data.

The correspondingk users are the suspicious users in a group as
their query vectors changed the least from the original space after
projecting into the reduced 1-dimension subspace.

In practice, since the number of columns (users)m in a matrix
can be very large, to reduce the computation complexity, we sam-
ple 1000 users to construct a smaller sampled query matrixMqc

and perform the above computation on only the sampled matrix.
Correspondingly, thek selected suspicious users are only from the
sampled matrix. In order to identify all such similar suspicious
users, we look back into the query log and identify all the users that
have identical search patterns (i.e., with identical query/click pairs)
to at least one of the suspicious users from the sample matrix. The
output are therefore the expanded bot-groups.

4. RESULTS AND VALIDATION
We sampled two months of search logs (February and April 2009).

Each month of sampled data contains over 1 billion pageviewsas
shown in Table 2. A pageview records all the activities related to
a search result page. From a pageview, we extract nine features as
shown in Table 1: user ID(recorded in the cookie), query terms,
clicks, query IP address, cookie, cookie creation date, user agents,
FORM, and whether Javascript is enabled. Due to privacy con-
cerns, user ID, cookie, and user agents are anonymized by hash-
ing. In addition, when we look at IP addresses in the log, we focus
mostly on studying the IP addresses in a region, rather than exam-
ining a particular IP address.

Among these features, the first three features (user ID, query
terms, and clicks) are used for detection and the remaining six are
used for validation.

We implement SBotMiner on the Dryad/DryadLINQ platform,
where data are processed in parallel on a cluster of 240 machines.
We first partition the data according to queries and examine the
query-click histograms of different queries in parallel. The output
of this step is a set of suspiciousQC pairs. In the second step, we
partition the data according to users and process users in parallel.
This step extracts all the activities of users that are associated with
suspiciousQC pairs. Finally, eachQC pair is processed in parallel
using the matrix-based detection scheme. The entire process of
SBotMiner can be finished within 2 hours to process the 700GB of
sampled data.

4.1 Detection Results
Table 3 summarizes our detection results. The history-based de-

tection scheme detects more than 500K groups in February and
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Figure 7: Number of search activities per user.

480K groups in April. Among these groups, a dominant fraction
of the bot-search activities can be detected using the simple group
“focus-ness”Fqc metric. WithFqc = 0.9, the matrix-based ap-
proach identifies 280K groups in February and 322K groups in
April to be bot groups. In total, these groups involve over 60
million pageviews in February and 63 million pageviews in April,
which roughly account for 3.8% of the total sampled traffic.

We look at the number of user IDs per searchbot group detected
with theFqc metric. Figure 6 shows the distribution. The x-axis
is the number of unique user IDs per group and y-axis is the cor-
responding number of groups. We can see that over 58K groups
are small (with just 100 user IDs, where 100 is our threshold of the
distributed search bot). There are several large bot groups, with the
largest one containing 1.3 million user IDs.

Figure 7 shows the search activity per user ID. A majority of
the user IDs are quite transient, conducting only one search. This
could also be caused by the fact that some search bots disablecook-
ies, so each search query will generate a new user ID. However, we
do capture some bot users that are aggressive. The most aggres-
sive user conducted 199K searches. This user may have utilized a
script to obtain realtime stock price. The script generateed multiple
queries per second (see Section 5.3.4 for more details).

For the remaining suspicious groups, SBotMiner performs PCA
and detects 137 groups as bot-search groups using both February
and April’s sample data. Figure 8 shows the cumulative distribution
of these group sizes. Majority of the groups (90%) have fewerthan
4,000 unique bot-users, with a few groups being very large with
more than 10,000 users.

Although the number of groups detected using PCA is small,
interestingly, we find a phishing attack among them by analyzing
the groups with the most number of users. This attack happened
in April, using which data, SBotMiner identifies five large groups
involving more than thousands of unique users that all searched the



Suspicious groups Bot groups Total Pageviews Unique user IDs Unique IP addresses

Feb data 543,600 280,767 60,335,661 81,511,784 212,109
April data 480,491 322,476 63,525,084 61,342,906 314,341

Table 3: Result Summary
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Figure 8: CDF of the number of unique users per group.

keyword “party” for image results. Examining closely, we find that
all the users had the following similar format in their referrer field,
with a website followed by some user IDs:

http://<domain-name>.com/?userid

Further study suggests these five groups were part of a phish-
ing attack that steals the credentials (login names and passwords)
of the users who access social network sites or use messengerser-
vices.When this attack compromises a user account through phish-
ing, it logs in as the user to the corresponding service and sends
both a message and a URL link to the friends in the contact list.
Each such message tells the friend that the user has found a picture
of the corresponding friend and the picture is stored in the attached
URL link. When the friend clicks the link, she will be directed to
a Web site, asking her to log in in order to see the picture. This
Web site is set up by the attackers. Once the friend enters herlogin
name and password, she will be redirected to the Live search site
using keyword “party” to display a set of image results from the
query. Meanwhile, the attack successfully collects another victim’s
credential and can further propagate the attack by infecting more
users. The user IDs attached at the end of the referrer field shows
the victim user IDs.

Using this information, we examine all queries that share the
similar structure in their referrer fields and identify manymore user
IDs that are likely the phishing attack victims. For this particular at-
tack, the search traffic is actually not generated from bots,but from
a group of real victim users. Although SBotMiner is not strictly de-
tecting bot-traffic in this case, the ability to identify unusual search
traffic group is important to detect and stop other attacks asearly
as possible.

4.2 Validation
We verify the captured bot activities by examining the similarity

within the group. As we mentioned in Section 3.2, SBotMiner uses
three features for detection (user ID, query and click). Now, we
use the remaining features for validation: hash of cookie, cookie
creation date, IP address, FORM, hash of user agents. If one group
has over 99% of pageviews agreeing on one feature, e.g., sharing
the same FORM, we consider that group has one identical feature.
If a group agrees on one or more features, it indicates that this group
is highly likely to be controlled by one commander, and thus likely
to be bot-groups.
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Figure 9: The number of identical features vs.Fqc. Each bar
plots the average number of identical features per group, error
bars represent (+/-) standard deviation.
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Figure 10: Number of identical features in each group. (a) bot
groups (Fqc > 0.9), (b) flash-crowd groups (Fqc < 0.1).

Figure 9 plots the number of identical features that each group
agrees on when we vary the group focusness thresholdFqc. As we
can see if a group is very focused, i.e., most users all query one
particular query, these users tend to have more than one identical
feature. This validates that these groups are very likely tobe con-
trolled by one commander. For a group with a low focusness, i.e.,
users have diverse query terms, users within this group tendto have
zero identical features.

As SBotMiner conservatively setsFqc = 0.9 as the threshold for
selecting bot groups, Figure 10(a) shows the number of identical
features within the selected bot groups. We can see that for most
groups, records within a group share three or more features,sug-
gesting they are highly likely to be controlled by one entity(at-
tacker). Only around 0.3% of the groups do not agree on any fea-
ture. They may be the false positives of our approach.

As a comparison, we check the similarity of features of flash-
crowd like groups. The flash-crowd groups are categorized bythose
with a sudden increase in volume (captured by history-basedde-
tection), but have a very lowFqc ( Fqc < 0.11). There are a total
of 125,357 flash-crowd groups. Figure 10(b) plots the numberof
identical features within flash-crowd groups. We can see that over
98.6% of groups do not agree on any feature, showing that they
are from many users and are unlikely to be controlled by a single
attacker. The dramatic difference between the captured botgroups

1We pick 0.1 as threshold because the fraction of groups between
0.1 and 0.6 is very small as shown in Figure 5.
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Figure 11: Number of unique IP addresses per search bot.
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Figure 12: Number of search activities per IP address.

and the flash-crowd groups suggests that the identified bot groups
are indeed very suspicious.

5. SEARCH BOT TRAFFIC ANALYSIS
In this section, we analyze the bot traffic identified by SBotMiner

to understand what these queries are and where they are from.We
begin with examining the IP-address distributions of the detected
bot traffic and their overlap with the spamming botnets detected in
previous work [33]. We also study the bot traffic groups country-
by-country and present representative cases.

5.1 IP-Address Distributions
The number of IP addresses per bot has a similar distributionas

user IDs. As shown in Figure 11, most groups contain just one IP
address. However, the largest group SBotMiner identified isquite
distributed. It contains 13K IP addresses, conducting a query for a
Chinese Web site.

Per IP wise, most IP addresses are quite stealthy, issuing only one
or a few searches as shown in Figure 12. There are a few aggressive
IPs. The top one searched 242K search queries for used machines
(details in Section 5.3.4).

We examine the IP address distributions across the entire IPspace.
Figure 13 shows that both February and April have similar botIP
address distributions: more than 75% of the IP addresses arefrom
space 64.0.0.0-128.0.0.0, with the remaining coming from IP ad-
dress range 211.0.0.0 - 224.0.0.0.

5.2 Overlap with Spamming Botnets
We further compare the IP address distributions with the spam-

ming botnet IP address distribution derived from previous work
BotGraph [33]. We use one-month Hotmail user-login data col-
lected in February 2009 as an input to BotGraph, which returns
1.66 million spamming botnet IP addresses for that month. The
IP addresses output by BotGraph are botnet IP addresses thatwere
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Figure 13: Distribution of bot IP addresses.

used by attackers to log into Hotmail and send spam emails. In-
terestingly, we find the spamming botnet IP address distribution to
be quite different from the search bot IP address distributions. In
particular, a large portion (around 30%) of spamming botnetIP ad-
dresses were around IP address ranges 191.20/8. However, there is
not much search bot activity in this IP address space. We manually
investigate this range and find many of them are from South Amer-
ica countries such as Chile. We also compute the exact overlaps
among the three sets of IP addresses. Although about 7% - 10% of
search bot IP addresses overlap between February and April,both
sets of search bot IP addresses hardly overlap with the BotGraph
generated spamming botnet IP addresses. Two factors might lead
to the difference in terms of IP address distributions. First, a bot-
net is often used for a dedicated attack at each time, e.g., rented to
launch a specific attack. Thus search botnets and spamming bot-
nets do not overlap simultaneously in time. Second, not all search
bot traffic is from malicious botnet attacks. In our analysis, we find
many classes of search bot traffic with different motivations. While
these search queries may not be launched by botnet attackers, a
large fraction of them are also attack traffic.

5.3 Search Bot from Different Regions
Table 4 shows the top regions with the most number of search bot

IP addresses. Some of them are regions with large user populations
such as China and US. But surprisingly, we also see small regions
such as Japan, which usually do not appear in the top region list of
compromised hosts. Table 5 shows the table of top regions with the
most number of searches. Also, surprisingly, we see regionssuch as
Singapore and Netherlands, which usually are not associated with
large percentages of compromised hosts either.

In this section, we look at some of these regions in detail and
present the differences between search bots from differentregions.
For each case, after we study an attack in a particular region, we
also look back to the general results to see whether this typeof
attack is general. By doing attack analysis, we hope to shed some
lights on to the activity and the motivation of the current search
bots.

Figure 14 compares the bot IP activities in different regions. The
x-axis represents the number of searches per IP address and the
corresponding y-axis shows the percentage of IPs that conduct that
number of searches. In general, most IPs in all five regions conduct
a few searches and there are relatively few aggressive ones.The
distribution of five regions are significantly different: IPs in China
are most conservative, with 63% of the IP addresses conduct only
one search. In contrast, in Singapore, only 15% of IP addresses
conduct one search and there are higher percentages of aggressive



Number of IPs Region Name

201777 China
34698 Germany
22834 Taiwan
17639 United States
2814 Japan
2720 Russian Federation
2106 India
2036 United Kingdom
1940 Hong Kong
1533 Canada

Table 4: Top 10 regions with the most bot IPs (April).

Number of Queries Region Name

19505840 United States
5572524 China
5412604 Germany
4919520 United Kingdom
2712602 Korea (south)
1914341 Canada
1557021 Russian Federation
1204199 Netherlands
1181441 Singapore
1123857 Japan
953133 Brazil

Table 5: Top 10 regions with the most bot queries (April).

IPs. This might be correlated with the network access bandwidth
of different regions. As Japan and Singapore have higher band-
width, IPs there could be leveraged for aggressive searches. Next,
we study search bots in these regions in detail.

5.3.1 Search Bots from Singapore and Japan
It is surprising to see Singapore to be on the top 10 regions with

the most number of search queries in Table 5, as Singapore has
never been reported to be the home of a high percentage of botnet
hosts in previous studies [29, 26]. When we look at the search
bot IP addresses in Singapore, we find that there are relatively a
small number (593) of search bot IPs, but some are very aggressive.
There are 25 IP addresses in Singapore that each conducted more
than 10K searches in April. This could be related to the fact that
these regions has high speed Internet access links.

We further investigate the most aggressive IP addresses in Sin-
gapore and Japan. Most of them issued very similar queries inthe
format ofword “.php?” , whereword is an arbitrary word in many
languages (could be obtained from some dictionary). We suspect
that attackers would like to use search engines to identify all PHP
scripts that take arguments. It is known that attackers can test these
PHP scripts with malicious arguments to see whether there are vul-
nerabilities in these scripts [22]. There is another similar search
term in the format ofsite:word “.aspx?” that seems to be related
to searching for vulnerabilities in ASP scripts.

Using the entire datasets, SBotMiner detects 8,678 groups search-
ing for PHP scripts in Feb and 79,337 such groups in April; 64
groups searching for ASP scripts in Feb and 301 groups in April.
These searches spread all over the world.
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Figure 14: Distribution of Bot IP addresses in different regions.

Solar Power Ad Clicks

HomeMadeEnergy.org
BuildSolarPanels.net

www.ServiceMagic.com
SolarPower.TheAuthorsOutlet.com

www.HomeSolarGuide0.com
www.earth4energy.com

www.SunPowerCorp.com
www.Segen.co.uk/Solar

Table 6: An example click bot.

5.3.2 Search Bot from China
China has by far the largest number of search bot IP addresses.

However, most IP addresses only conducted a few searches. We
find several different search patterns for bots from China:

First, surprisingly, more than half of the search bots submitted
queries in English even though most Chinese and Taiwanese users
do not speak English.

Second, there are a few low rate search bots for promoting Web
sites. These groups issued the exact Web site name and clicked on
the same Web site. Globally, SBotMiner identifies 38 groups of
such Web site promoters in the Feb log and 54 groups in April.

Third, we find an aggressive bot group that searched “Solar Power”
and clicked a total of 23,892 advertisements (Table 6). We sus-
pect this attack may try to deplete competitor advertisement budget.
There were two other groups from China in the same category and
they also shared IP addresses. Globally, however, only a tiny per-
centage of search bots conducted click fraud. SBotMiner identifies
in total four groups using the February data, with 31,184 advertise-
ment clicks. The “Solar Power” example mentioned above is one of
them. Similarly, there are four groups in the April data with1,154
clicks world wide.

Finally, the searching for PHP and ASP scripts also appear. In
addition, we also observe queries in the format ofword mail, where
word can be replaced by any keyword. These could be attackerstry-
ing to collect email addresses for spamming. World wide, there are
3,173 such mail-searching groups detected in Feb and 3,067 groups
detected in April.



5.3.3 Search Bot from Russian Federation
Similar to Singapore, most of the search bots from Russian Fed-

eration are related with vulnerabilities. We see a dominatenumber
of search bots searching for PHP scripts. Different from theones
in Singapore, they are in a different format:“index.php?word=”,
whereword can be replaced by common PHP commands such as
get, cmd, q.

We also see a large number of searches for IP addresses in the
format of“ip:a.b.c.d” , and“ip:a.b.c.d:port” . From our entire datasets,
there are 1,310 groups searching for IP addresses in February and
2,509 groups in April. Some of these IP addresses are likely open
proxies and we are further investigating them.

5.3.4 Search Bots from the US.
The top aggressive search bot user ID is in the US. This particular

one is not malicious. Rather, it was gathering realtime information
from the search engine. This user seemed to have used a script
for querying stock symbols such as MSFT, YHOO, INTC, with
multiple searches per second.

The top aggressive search bot IP address is also in the US. This
IP address issued a large number of queries searching for used ma-
chines, used equipments, and used hand vans, etc. In the April sam-
pled data alone, this IP address conducted more than 242K queries.

Besides the top aggressive user ID and IP address, many of the
search bots in the United States had similar query patterns as search
bots from other regions, e.g., searching PHP and ASP scripts. Fu-
ture work includes further in-depth analysis of the detection results
and more formally categorizing them.

6. COUNTER STRATEGY
Improving network security is an arms race between the attacker

and the detector. With SBotMiner available, attackers may want to
game the detection system. In this section, we discuss such possi-
bilities and show that it is non-trivial to evade the detection system.

The first step of SBotMiner (the history-based approach) is hard
to evade. As mentioned in Section 3.1, if an attacker wishes to in-
fluence search results, he has to generate a query-click distribution
that is significantly different from the normal distribution. Con-
sequently, the attack would be captured by the history-based de-
tection. For the remaining of the search bots that aim to gather
information through search engines, as shown in the examples in
Section 5, their search terms usually are different from human users
and their rates are also much higher. Therefore, these attacks can
also be detected by the history-based approach.

However, a sophisticated attacker may attempt to add random
noise (queries) to the bot activity, so that the group looks dissimilar
and thus the second step of SBotMiner (the matrix-based approach)
may conclude the attack to be a flash-crowd event. Here, we present
a few observations to suggest that such an attack would stillbe
difficult if not impossible.

First, normal users do not issue random queries. It is common
for users to share frequent queries. Therefore, it is non-trivial to
mimic normal user queries by inserting random queries.

Second, many attackers use botnets that are distributed across
the globe. It is very hard to make their queries meaningful tolo-
cal regions. As we have shown in Section 5.3.2 and 5.3.3, the top
English queries in non-English speaking countries are verysuspi-
cious. To closely mimic normal user behavior, an attacker needs to
build normal user profiles across many regions, which would incur
high overhead.

Even within a large English-speaking country such as the U.S.,
query terms from different regions are often different. Figure 15
shows that the queries from a UC Berkeley IP range (136.152.0.0/8)
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Figure 15: Comparison of query frequencies of a Berkeley IP
range and a UIUC range. The x-axis is sorted according to the
query frequency in the Berkeley range (descending order).

are quite different from those in a UIUC IP range (128.174.0.0/8),
although both are university ranges. Most of the query termsappear
in only one range, but not the other. Even for the top ten queries
from Berkeley, only five of them appear in the UIUC range. The
remaining five are highly localized queries such ascalmail, bspace,
which are all services local to the Berkeley campus.

Further, SBotMiner could potentially leverage a richer setof fea-
tures, e.g., the six features used for validation, inter-query time, and
query patterns, for detection as well. It is essentially difficult for the
search bot commander to randomize every feature, especially when
they do not know the feature list used for detection ahead of time.
Also, SbotMiner currently operates in a postmortem fashion. In fu-
ture, we plan to evaluate the possibility of online operation, e.g.,
realtime filtering search bots based on attack signature generated
by the offline detection results. This will make it even harder for
attackers to evade the detection.

7. CONCLUSION AND FUTURE WORK
We presented SBotMiner, a novel system for detecting searchbot

traffic from query logs at a large scale. Our work focuses on identi-
fying and analyzing stealthy, distributed, low-rate search bot groups
that were difficult to detect before. We used sampled query logs
collected in two different months and identified 700K bot groups
with more than 123 million pageviews involved. The percentage
of bot traffic is non-trivial — accounting for 3.8% of total traffic,
suggesting identifying and filtering search bot traffic is important
to compute accurate data-mining statistics from query logs.

Furthermore, we performed an in-depth study on the identified
bot traffic on the Internet, and found that bot hosts are distributed all
over the world. Initial evidence shows that many of them might be
associated with various forms of malicious activities suchas phish-
ing attacks, searching for vulnerabilities and spamming targets, or
checking blacklists. Interestingly, attacks from different countries
and regions do exhibit distinct characteristics, and search bots from
countries with high bandwidth Internet access are more likely to be
aggressive in submitting more queries. We hope our early findings
can call for more attention and future research on analyzingbot or
abnormal search traffic for enhancing the network security.
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